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Nonuniform non-neutral plasma in a trap
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An analytical model for breathing oscillations in a nonuniform non-neutral plasma slab is developed. The
plasma is relatively small and warm with the smallest dimension only of several Debye lengths. Nonuniformity
in the equilibrium results in a frequency shift associated with pressure and boundary effects. The plasma size
and temperature, being related to the frequency shift, can therefore be evaluated from frequency measurements.
In particular, for small nonuniform plasmas the frequency of the breathing mode is twice that predicted by the
cold fluid theory. Nonlinear oscillations are also considered and the pressure is shown to have an important
effect on the dynamics. Analytical solutions for linear and nonlinear oscillations are obtained and compared
with that from one-dimensional particle-in-cell simulations. Good agreement is found.
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I. INTRODUCTION

A trapped cloud of identical charges can be considere
a non-neutral plasma@1,2# if its size is large compared to th
interparticle spacing and Debye length. There has been m
interest in linear electrostatic waves in trapped non-neu
plasmas@3#. These modes can be easily excited and m
sured, providing useful information on the plasma sha
size, and density. The plasma modes are usually studie
the background of an equilibrium state. The existence
such a state is an important feature of the trapped non-ne
plasma@4#. An important case, where the equilibrium sta
can be found analytically, is when the plasma is small co
pared to the dimensions of the trap and resides in a ne
quadratic trap potential~the harmonic trap!. The cold-
plasma-fluid approximation then leads to a constant-den
equilibrium @5#, which is invoked in most studies of electro
static modes in non-neutral plasmas.

The pressure and temperature effects are completely
nored in the cold-plasma-fluid approximation. These effe
can, however, be important if the equilibrium density is n
constant. For example, at very low temperatures the fl
model is inadequate and the plasma equilibrium is marke
nonuniform. Corresponding corrections to the plasma
quencies were recently found@6#. On the other hand, even
constant-density plasma cloud behaves quite differently n
the boundary. The size of the boundary region is usu
comparable to the Debye length. If the latter is far less th
the plasma size~as was the case for most previous studies
plasma oscillations!, the boundary effects on the volume o
cillations are negligible. However, some non-neutral pl
mas, such as that of pure electron or positron, are often r
tively small and warm, and the smallest dimension of
cloud is only several Debye lengths@7#. The equilibrium
state is, therefore, significantly nonuniform. The goal of t
present paper is to describe the oscillatory modes in su
1063-651X/2003/67~1!/016408~9!/$20.00 67 0164
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plasma. As we will see, boundary effects result in a f
quency shift proportional to the square of the ratio of t
Debye length to the typical cloud dimension. If one keeps
plasma temperature on the same level and increases the
ber of trapped particles the shift disappears, indicating tha
has a boundary origin. That is, the shift is negligible for co
or large plasmas, but it can significantly change spectrum
small and warm ones.

The simplest oscillatory mode of a trapped non-neu
plasma cloud corresponds to the center-of-mass motion.
not affected by the plasma shape and density under the
monic trap approximation. We shall, therefore, concentr
on the breathing~quadrupole! mode, which can be readily
described in both the linear and nonlinear regimes. T
mode is analogous to the well-known volume Langmuir o
cillations in uniform infinite plasmas. For the sake of sim
plicity we consider a non-neutral plasma slab in a on
dimensional harmonic trap. Such a geometry appe
naturally in experiments@8# and was investigated both ana
lytically and numerically@9#. In contrast with the previous
work we ignore the effect of nonharmonic terms in the tra
ping field and the fact that the aspect ratio of a thin obl
plasma, being small, is nonzero. Our slab is, therefore,
fectly one-dimensional and confined by a perfectly parabo
potential well. Making these simplifications we concentra
on temperature and boundary effects, both are treated
lytically in a nonperturbative manner. The plasma equil
rium, and linear and nonlinear oscillations, are then inve
gated in a single framework. First, we neglect temperat
effects and consider nonlinear oscillations of such a s
Then we take pressure into account and consider the equ
rium state, as well as the linear and nonlinear breath
plasma oscillations, demonstrating the effects of nonuni
mity. In connection to the nonlinear oscillations we also a
dress an important issue concerning wave breaking and
lapsing solutions. Such solutions are well-known artifacts
©2003 The American Physical Society08-1
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the cold-plasma approximation@10#. We will see how wave
breaking is prevented by the pressure. Regular solutions e
formally for any amplitude, but it appears to be unstable
the amplitude is too large. The theoretical results are co
pared with that from particle-in-cell~PIC! simulations.

II. COLD-PLASMA SLAB

The equilibrium properties of a cold-plasma slab can
easily understood in the Lagrangian frame from a consid
ation of the forces acting on a single particle. We assume
a collection of particles with equal massm and chargeq is
stored in a one-dimensional trap with a harmonic trapp
force mv0

2x on the particle at the pointx, wherev0 is re-
ferred to as the trap frequency. The trapping force may
thought of as resulting from an imaginary static backgrou
of opposite charges with constant densitynb such that
4pq2nb /m5v0

2. The trapping force is opposed by Coulom
repulsion of the trapped particles. For a cold uniform plas
with the constant densityn the condition of equilibrium sim-
ply indicates thatn5nb , so that the two forces equilibrat
each other. The quantitynb , being uniform, is also useful fo
normalizing the plasma density in more complicated sit
tions.

When the particles are pushed, say att50, the equilib-
rium will be broken. Simple arguments first applied by Da
son @10# lead to a full description of the subsequent plas
oscillations. In the one-dimensional case the repulsion fo
acting on any particular particle remains fixed as long as
ordering of the particles is unchanged, whereas the trap
force increases with the particle coordinate. The motion
the particle follows the equation

d2x~ t !

dt2
5v0

2x~0!2v0
2x~ t ! ~1!

so that all particles undergo harmonic oscillations with
trap frequencyv0. Breathing plasma motion occurs if th
initial velocity of any particle is proportional to its position

dx~ t !

dt U
t50

5av0x~0!, ~2!

where the dimensionless parametera5const. The particle
trajectories are then given by

x~ t !5A~ t !x~0! and A~ t !511a sinv0t, ~3!

where the dimensionless propagatorA(t) is identical for all
particles. This propagator is in fact a Jacobian of the tra
formation from the Lagrangian variables to the Euleri
frame. A characteristic property of all quadrupole plas
modes is that the Jacobian depends on time, but not on sp
The Jacobian must also remain positive for regular solutio
The well-known wave breaking phenomenon occurs then
a.1.

The plasma densityn(t)5nb /A(t) remains uniform for
the breathing mode. Recall that the trapped plasma alw
has a boundary and that the uniform density approxima
01640
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requires the latter to be sharp. If initially the plasma
bounded in the regionuxu,R0, then at its boundaryR(t)
5A(t)R0. The solution~3! is a particular one@11# as it is
associated with a special velocity distribution~2!. The distri-
bution can be realized, for example, by a temporary sh
down of the trapping force of the stationary equilibriu
state. The plasma expansion caused by Coulomb repul
will then lead to the desired initial particle velocities. On th
other hand, the simple solution~3! clearly exhibits two most
important properties of cold-plasma oscillations, namely,
absence of any nonlinear frequency shift, and the appear
of wave breaking for perturbations witha.1. As we shall
see, both these features are considerably modified by p
sure and boundary effects.

III. NONUNIFORM EQUILIBRIUM

In this section we discuss the equilibrium properties o
plasma slab, assuming that the trapped particles have a
form temperatureT0. We introduce the thermal velocityvT
5(T0 /m)1/2 and the characteristic lengthL5vT /v0. The
latter quantity being close to the Debye length is also u
form and useful for normalizing lengths. The equilibriu
density profile is uniquely determined by the parameter

D5
N

2nbL
,

whereN is the total number of trapped particles per slab a
andN/(2nb) is the cold-fluid value of the plasma radiusR0.
The familiar case of sufficiently large or cold plasma cor
sponds toD@1. The caseD;1 corresponds to sufficiently
small and warm plasmas with the size of several Deb
lengths. IfD!1 the particles interactions are negligible com
pared with their thermal energy and the trap potential. In
latter limit we have a collection of independent particl
rather than a real plasma with collective behavior.

To obtain the equilibrium space-charge electric field a
particle distribution one can directly solve the Poisson eq
tion, assuming that the particles obey the Boltzmann dis
bution in the space-charge and trapping electric fields. Su
solution has been intensively discussed in the literature
different geometries~see Ref.@12# for details! and here we
only outline one-dimensional results in an easy-to-use fo
The nonuniform equilibrium densityn5n0(x) can be written
as

n0~x!5nbF~x/L !, ~4!

where the dimensionless functionF(j) is even and obeys the
equation

d

dj F 1

F~j!

dF~j!

dj G5F~j!21, ~5!

with dF/djuj5050 andF(0) being a free parameter dete
mined byD. The functionF(j) must be positive and tend t
zero at infinity. Physically meaningful solutions correspo
to 0,F(0),1. Different solutions are possible for differen
8-2
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NONUNIFORM NON-NEUTRAL PLASMA IN A TRAP PHYSICAL REVIEW E67, 016408 ~2003!
F(0), asshown in Fig. 1. The particular solution should b
chosen according to the integral condition

E
0

`

F~j!dj5D, ~6!

indicating that the trapped cloud containsN particles per
slab area. The reader should guard against the appa
simple scaling form of Eq.~4!, sinceF(j) depends implicitly
on the plasma parameters because of Eq.~6!.

Figure 1 shows how the Gaussian density profile chan
to the step profile. Large or cold-plasmas correspond
F(0)→1. Here the density is constantn0(x)5nb as long as
uxu,N/(2nb) and it quickly tends to zero otherwise. Th
opposite case of independent particles with Gaussian di
bution corresponds toF(0),1. In the following sections we
trace in detail the evolution of the plasma oscillations as
plasma evolves to a small and warm state.

IV. BASIC EQUATIONS

We now generalize the problem of cold non-neut
plasma oscillations to include pressure and boundary effe
We assume the width of the plasma slab to be of the orde
several Debye lengths and much larger than the interpar
spacing. The plasma equilibrium is significantly nonunifor
A nonuniform equilibrium density profilen5n0(x) invali-
dates the familiar periodic solutions of the form exp(ikx).
Furthermore, the very definitions of the mean plasma den
plasma frequency, and actual cloud size requires sepa
consideration for small plasmas. The problem of linear a
nonlinear breathing oscillations can nevertheless still
solved provided that the plasma is initially in an equilibriu
and that the initial velocity of each particle is proportional
its position. In this case a direct generalization of the ab
solution ~3! can be found.

Our approach, similar to that used by Chandrasekhar@13#
for gravitating fluids, is to consider appropriate moments
the number densityn(t,x). This approach is known to b
useful for a non-neutral plasma@6#. It also provides a clea
definition of the mean slab width and density for arbitra

FIG. 1. Equilibrium plasma distributionn5n0(x) versus space
coordinate for different initial valuesn0(0)/nb . As the total number
of particles increases or the temperature decreases the Gau
density profile gradually changes to a step profile.
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plasma distributions. Accordingly wedefinethe densityN(t)
and half-sizeR(t) of the nonuniform plasma slab through th
equations

E
0

`

n~ t,x!dx5N~ t !R~ t !

and

E
0

`

n~ t,x!xdx5
1

2
N~ t !R~ t !2,

whereN05N(0) andR05R(0) are calculated using the ini
tial equilibrium profile. For cold or large plasmasR0
5N/(2nb), whereas for the Gaussian limitR05(8/p)1/2L.
The corresponding plasma density isN05N/(2R0). The
quantity N0 can now be used todefinea mean plasma fre
quency

v̄p5A4pq2N0 /m,

which is equal tov0 for D@1 and tends to zero asv0D1/2

for D!1.
Note that due to the conservation of particle number

productN(t)R(t) is constant. We can thendefinea dimen-
sionless parameterA(t) such that

N~ t !5
N0

A~ t !
and R~ t !5R0A~ t !, ~7!

where A(0)51. One can get a simple equation forA(t),
starting from the standard one-dimensional plasma-fl
model

]n

]t
1

]

]x
~nv !50, ~8!

]v
]t

1v
]v
]x

5
q

m
E2v0

2x2
1

mn

]P

]x
, ~9!

]E

]x
54pqn, ~10!

where the trapping force and pressure are included in Eq.~9!.
The equation of state for the pressureP(t,x) will be speci-
fied later. We consider symmetric oscillations of the plas
slab, so that the velocityv and electric fieldE should vanish
at x50, and all the other plasma parameters should van
sufficiently fast for x→`. The equilibrium solution isv
50 andn5n0(x) with corresponding values for the pressu
and electric field. The steady equilibrium state is then d
turbed by introducing the initial velocity

v~0,x!5av0x, ~11!

wherea is a constant with the same value and meaning a
Eq. ~2!. To proceed, we multiply Eq.~8! by xdx and inte-
grate fromx50 to x5` to obtain

sian
8-3
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AMIRANASHVILI, YU, AND STENFLO PHYSICAL REVIEW E 67, 016408 ~2003!
d

dtE0

`

nxdx5E
0

`

nvdx, ~12!

which when evaluated att50 leads to the initial condition
dA/dtu t505av0. Thus we have generalized Eq.~2!. We now
multiply Eq. ~9! by ndx and integrate. After some algebr
and using Eqs.~10! and ~12!, we obtain a simple momen
equation

S d2

dt2
1v0

2D E
0

`

nxdx5
2pq2

m S E
0

`

ndxD 2

1
P~ t,0!

m
,

where the last term is the pressure atx50.
The derivation up to this point isexactwithin the frame-

work of the plasma-fluid equations. One can easily obtai
closed set of equations for a cold pressureless plasma
reproduce the solutions given by Eqs.~1!–~3!. The problem
is more complicated for a warm plasma. To include therm
effects we adopt a simple approach originally developed
Dubin @14#. The equilibrium pressure

P~0,x!5n0~x!T0 ~13!

is artificially replaced with

P~0,x!5aN0T0S 12
x2

R0
2D ~14!

for uxu,R0 andP(0,x)50 otherwise. The constanta can be
chosen in different ways. Following Dubin we integrate E
~13! and ~14! over the plasma extent and require the resu
to be identical. That is,a5 3

2 for our infinite one-dimensiona
plasma slab. Assuming an adiabatic equation of state w
nally obtain

P~ t,x!5aN0T0S N

N0
D 3S 12

x2

R2D , ~15!

where the parametera is kept to make our formulas mor
flexible.

Of course, Eq.~14! is a crude approximation for larg
plasmas with constant density since the actual pressure
dient is not linear inx but concentrated at the edge of th
plasma where the density falls to zero. On the other ha
Eq. ~14! is quite reasonable for the small plasmas of inter
here. We can check it by calculating the actual pressure a
plasma center directly from the numerical solutions of E
~5! and comparing it with that predicted by Eq.~14!. Indeed
these two values are close to each other for small plasma
shown in Fig. 2. Finally we evaluate the pressure atx50,
pass to the variableA(t) in the moment equation, and obta

d2A

dt2
1v0

2A5v̄p
21

2avT
2

R0
2A3

, ~16!

where we recall thatA(0)51, dA/dtu t505av0, and a
5 3

2 , unless specified otherwise.
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Equation~16! is seen to be a selfconsistent generalizat
of Eq. ~1! for plasma oscillations. In what follows we solve
and compare the results with simulations.

V. SMALL OSCILLATIONS

In this section, we investigate thermal and finite-size
fects in the theory of linear breathing oscillations. We a
compare our results with that of other authors. Equation~16!
should admit an equilibrium solutionA51, so that

v0
25v̄p

212a
vT

2

R0
2

~17!

is an additional constraint for equilibrium. For cold or larg
plasmas the last term in Eq.~17! is small andv̄p5v0. In the
opposite warm limit the plasma frequency can be neglec
and we obtain the minimum possibleR05(2a)1/2L. We see
that the slab cannot be arbitrary thin because of the temp
ture effect. Note that for the Gaussian distributionR0
5(8/p)1/2L which is slightly different from our prediction
for a5 3

2 . The approximate character of Eq.~15! is respon-
sible for this difference. One can then improve the choice
a ~i.e., replace3

2 with 4/p, the latter is 15% less! or even
make it state dependent. Such an improvement, being
dious, has however no significant influence on the res
obtained. We will, therefore, stay in the framework of th
present model.

Note that generally bothv̄p andR0 depend onN, T0, and
the trap parameters. Such a dependence is determine
Eqs. ~5! and ~6! and cannot be extracted directly from E
~17!. Nevertheless we can use Eq.~17! to check the validity
of our approach. To this end we solved numerically Eqs.~5!
and~6! and used the equilibrium profilen0(x) for calculating
the density moments and for evaluatingR0 , N0, and v̄p .
The results of each calculation can be presented as a poi
the (N0 /nb ,R0 /L) plane, as shown in Fig. 3. The theoretic
expression~17! is also plotted in this plane. We see that t
agreement between the equilibrium theory and our mom
equation~17! is quite reasonable. Note that although the a
proximation ~14! is not valid for large plasmas, the whol
boundary effect also disappears in this limit. That is why

FIG. 2. The actual value of the equilibrium central pressu
~thick line! from Eqs.~4! and~13! and that~thin line! predicted by
Eq. ~14! versus the size of the plasma cloud.
8-4
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good agreement is achieved in Fig. 3 despite of our cr
approximation for the pressure.

Small oscillations around the equilibrium have a fr
quency

v25v0
216a

vT
2

R0
2

, ~18!

where the last term is seen to have the usual Bohm-G
form 3k2vT

2 with k;1/R0. ForvT50 we reproduce the cold
plasma resultv5v0. In the warm case we insert the min
mum R0@5(2a)1/2L# to see thatv52v0. So the frequency
increases with the temperature and is finally twice its c
value.

We are now in a good position to compare our predictio
with that of other theories. The latter were developed for
ellipsoidal plasma cloud, the slab limit can be obtained wh
one of the semiaxes is much less than the others. Note,
the 3D version of Eq.~14! results ina5 5

2 when integrating
over the ellipsoid. With this correction Eqs.~17! and ~18!
agree with the existing results~see, for example, Eqs.~26!
and ~28! from Ref. @15#!.

The spectrum predicted by Eq.~18! is compared with that
from the plasma simulations in Sec. VII. Before doing th
let us first consider finite-amplitude oscillations.

VI. NONLINEAR OSCILLATIONS

In this section we investigate Eq.~16! to include thermal
and finite-size effects in the theory of nonlinear breath
oscillations. We first consider two special cases of cold la
sharply bounded plasmas and small warm Gaussian plas

A. Sharply bounded plasmas

In this case we haveR0@L andv̄p→v0. Using Eq.~17!
one can rewrite Eq.~16! in the form

d2A

dt2
1v0

2~A21!522a
vT

2

R0
2 S 12

1

A3D ,

FIG. 3. Equilibrium plasma density versus slab dimension. T
result from Eqs.~5! and~6! ~points! is in good agreement with tha
of Eq. ~17! ~solid line!.
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where the right-hand side is a small perturbation. The co
plasma result

A~ t !511a sinv0t ~19!

is reproduced when the temperature term is ignored. N
that the solution~19! is nonlinear because the amplitudea
need not be small. It is also clear that the expression~7! for
the average density is nonlinear. The frequencyv5v0 of
such a nonlinear oscillation happens to be the same fo
amplitudes in the pressureless limit. The amplitude dep
dence of the frequency appears when the temperature te
not ignored, but included as a perturbation. Thus, by stand
perturbation techniques@16#, we obtain a modified frequenc

v25v0
216a

vT
2

R0
2 ~12a2!25/2, ~20!

where for given a,1 the temperature should be sma
enough for the pressure term to be a small correction. If
amplitude is small as well we obtain the frequency

v25v0
216a

vT
2

R0
2

115a
vT

2

R0
2

a2,

where the familiar squared-amplitude nonlinear frequen
shift appears in the right. For low temperature plasmas
shift is a second order correction. On the other hand, foa
→1 the pressure cannot be considered as a perturbation
matter how small the temperature is. In this case Eq.~19! is
invalid and should be replaced by the full integral of E
~16!. No blow-up solution then exists fora>1. In particular,
for a@1 the pressure term behaves like an infinite repuls
potential wall located atx50. Thus, in the first approxima
tion one hasA(t)5ua sinv0tu. We see that the linear fre
quency, which was close tov0, is replaced by 2v0, exhib-
iting a nonlinear frequency shift.

B. Gaussian case

Equation~16! can also be easily considered in the limit
small plasmas, i.e., whenR0→(2a)1/2L and v̄p→0. Using
Eq. ~17! we rewrite Eq.~16! in the form

d2A

dt2
1v0

2A2
v0

2

A3
5v̄p

2S 12
1

A3D ,

where the right-hand side is a small perturbation. Ignor
the latter one obtains a nonlinear solution

A~ t !5A11
a2

2
1a sin 2v0t2

a2

2
cos 2v0t, ~21!

which shows that the characteristic periodT5p/v0 regard-
less of the amplitude. Note, that the right side of Eq.~21! is
always positive and no blow-up solution exists. A more ge
eral amplitude-dependent frequency can be obtained by

e

8-5
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ing into account thev̄p terms. A canonical version of pertu
bation theory is well suited for this calculation@17#. The
modified frequency is

v254v0
22v̄p

2h~a!, ~22!

where

h~a!5
32

p S d f

dsD
s5a2

,

f ~s!5E~k!A11
1

2
s1As1

1

4
s2,

k25

2As1
1

4
s2

11
1

2
s1As1

1

4
s2

andE(k) is the full elliptic integral of the second kind. Th
small amplitude limit of Eq.~22! is

v254v0
223v̄p

21
15

32
v̄p

2a2

and again the amplitude term is a second order correction
contrast with Eq.~20!, no modification of Eq.~22! is needed
with an increase of the amplitude because the factorh(a) is
a decreasing function of the amplitude, as shown in Fig.

C. General solution

It is also possible to find a general solution of Eq.~16! in
terms of elliptical functions. To obtain such a solution w
introduce the dimensionless timet5v0t and the Hamil-
tonian function

H5
1

2 S dA

dt D 2

1U~A!,

with

FIG. 4. The factorh from Eq. ~22! versus amplitudea.
01640
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U~A!5
1

2
A22~12e!A1

e

2A2

ande52a(L/R0)2P@0,1#. The two above considered limit
ing cases correspond toe50 ande51. To solve the genera
problem we note that the Hamiltonian should be equal
E05 1

2 a21U(1) due to the initial conditions. A solution is
then given by

t5E
1

A dA

A2@E02U~A!#
, ~23!

which is an elliptic integral. To calculate it, one has to inve
tigate the roots of the corresponding polynomial. The os
lations are bounded in the regionA1<A<A2, where
A1,2(a,e) are two properly chosen real roots of the equat
U(A)5E0. A typical plot of the effective potential energ
U(A) and a graphical illustration of what is meant by prop
roots for different values ofE0 is shown in Fig. 5. For given
plasma parameters one can find these two roots and pu
~23! in the form

t5E
1

A AdA

A~A22A!~A2A1!Q~A!
,

where Q(A) is a quadratic polynomial responsible for th
two other roots of the equationU(A)5E0. Figure 5 shows
that these roots are initially complex, but become real a
negative with increase ofE0. In any case their sum, sayAS ,
is a negative real number. It is also important to note t
bothQ(A1) andQ(A2) are positive. One can then pass to t
new variableu, where

p1

p2
tan2

u

2
5

A2A1

A22A
,

andp1,25@Q(A1,2)#1/2. The expression for the oscillation pe
riod T is then given by

FIG. 5. The effective potentialU(A) for e50.5. Black circles
indicate minimum and maximum values ofA(t) for different
choices ofE0.
8-6
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2v0T5
~A11A2!K~k!

Ap1p2

1
~p11p2!2@P~n,k!2K~k!#

Ap1p2~A11A22AS!
,

whereK(k) andP(n,k) are full elliptic integrals of the first
and the third kind, respectively. The corresponding para
eters are

k25
~A22A1!22~p22p1!2

4p1p2
, n5

~p22p1!2

4p1p2
,

and our definition for the elliptic integrals follows that o
Ref. @18#.

VII. SIMULATION

We have also performed one-dimensional PIC simulati
for the problems considered above. For the computation,
time is normalized byv0, and the length byL. Being close
to the plasma frequency and Debye length, these two
malization parameters are also well defined for nonunifo
distributions. Thus, the dimensionless plasma density isn/nb

and the normalized electric field isqE/mv0
2L ~i.e., the trap-

ping force atx5L is used to normalize forces!. For different
runs, we use from 102 to 106 particles per Debye lengthL.

FIG. 6. Typical behavior of the plasma radius. The simulat
~points! agrees with the theory~solid line!. The pressureless solu
tion ~dashed line! is also shown for comparison.

FIG. 7. The breathing oscillation for small plasmas is mod
lated. The present theory accurately predicts the frequency, bu
the modulation.
01640
-

s
e

r-

As the theory describes only symmetric oscillations, on
the regionx.0 needs to be considered in the computatio
The boundary atx50 is assumed to be absorbing and r
emitting. The total area covered by the computation is c
siderably larger than the plasma size, so that the parti
never reach the right boundary~e.g., they never leave th
trap!.

To study breathing plasma oscillations we first prepa
the above-described equilibrium distributionn0(x) with the
desired sizeR0 and Maxwellian velocities for the particles
The equilibrium retains on the background of small therm
fluctuations if the plasma is allowed to evolve freely. Brea
ing oscillations are initialized by forcing the particles to pe
form additional ~nonthermal! motion with initial velocities
proportional to their positions in accordance with Eq.~11!.
Properly chosen initial perturbations can generate osc
tions that remain small~e.g., almost linear!, but still consid-
erably larger than the thermal fluctuations. The plasma
then allowed to move freely in both the self-consistent a
trapping electric fields, and the moments of the density
evaluated to obtainA(t).

An example of the oscillations is shown in Fig. 6, whic
shows the oscillation of the plasma half-sizeR(t) for R0
57L and a50.1. The behavior is in good agreement wi
the theoretical curve obtained from Eq.~16!, whereas the
constant frequency of the cold-plasma solution~3! is inaccu-
rate.

After approximately one hundred periods a Fourier tra
form of the A(t) is used to obtain the frequency. Then th
whole procedure is repeated for the newR0. As the plasma
size decreases the oscillations become modulated as sh
in Fig. 7 for R054L and a50.1. Nevertheless, the corre
sponding Fourier transform still has a sharp peak and yie
the correct frequency.

TheR0 dependence of the frequency is presented in Fig
starting from the GaussianR0@5(2a)1/2L#. The frequency
of the linear oscillations agrees well with the theory as giv
by Eq. ~18!.

To investigate the nonlinearity we also studied the beh
ior of the oscillations for the sameR0 but differenta. As the
amplitude of the excitation exceeds some critical val
bounce oscillations very similar to that shown in Fig. 7 beg

-
ot

FIG. 8. Frequency of plasma oscillations versus slab dimens
The simulation result~points! is in good agreement with that of th
theory ~solid line!.
8-7
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to appear. Generally, the smaller the plasma the smaller
critical amplitude; forR0<5L the oscillations seem to b
always modulated.

Figure 9 showsR(t) for a strongly nonlinear regime with
a51.2 andR057L. Note that no blow-up solution appear
in contrast to the cold-plasma case. The theory correctly
dicts the maximum and minimum plasma densities as we
the nonlinear frequency. However, strong modulation
clearly observed, indicating that the solution is unstable. T
instability destroys the oscillations within a few periods af
its onset.

In general, several instabilities, such as trapping of
plasma fluid by the wave@19# or development of streamin
instabilities @20#, are possible in our system. To follow th
evolution it is useful to consider the phase plane (x,mvx).
Each particle is then represented by a point, and the wh
system forms a barlike cloud. Here,R0 andmvT are the half
dimensions of the bar and thex axis is an ‘‘equilibrium po-
sition.’’ The breathing mode corresponds to rocking oscil
tion (a,1) or rotation (a.1) of the barlike cloud around
the origin. As the amplitude increases, such an oscillatio
accompanied by development of spiral arms, as shown
Fig. 10. The phenomenon is similar to the formation of t
galactic spiral arms, but it takes place in the phase pl
rather then in the real space. A detailed description of

FIG. 9. The half size of the plasma cloud versus time fo
solution witha.1 from theory~solid line! and simulation~points!.
Such a solution would inevitably blow up in the cold-plasma lim
Pressure accounts for the regular plasma behavior observed
whereas the apparent instability is not described by the pre
theory.
d,
,

d,

01640
he

e-
s

s
e
r

e

le

-
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in

e
e

instability requires a kinetic approach and is beyond
scope of the present work.

VIII. CONCLUSION

In this paper we considered analytically the boundary
fect on the linear and nonlinear breathing oscillations o
trapped non-neutral plasma slab. It is shown that the
quency of the oscillations differs from that predicted by t
cold fluid approximation. The frequency depends on
plasma temperature and can be used to obtain the latter
experiment. The effects considered here have a boundar
lated origin, i.e., they disappear with an increase of
plasma size. Our approach leads to simple analytical desc
tions of both the linear and nonlinear oscillations despite
nonuniform plasma distribution. As expected, the famil
cold-plasma blow-up solutions are prevented by the pres
effects. Even for strongly nonlinear oscillation the theo
accurately predicts the amplitude and frequency, but not
stability of the solution. The analytical results agree reas
ably well with that from PIC simulations.
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FIG. 10. Phase space of 3000 representative particles and
mirror images att56.23v0

21 for the solution displayed in Fig. 9
The spiral arms are developing and indicating instability of t
solution.
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